翻訳と辞書
Words near each other
・ Spheres (TV series)
・ Spheres 2
・ Spheres of Chaos
・ Spheres of exchange
・ Spheres of Justice
・ Sphere–cylinder intersection
・ Spheric
・ Spheric Universe Experience
・ Spherical 3-manifold
・ Spherical aberration
・ Spherical angle
・ Spherical aromaticity
・ Spherical astronomy
・ Spherical basis
・ Spherical bearing
Spherical cap
・ Spherical category
・ Spherical code
・ Spherical contact distribution function
・ Spherical coordinate system
・ Spherical cow
・ Spherical design
・ Spherical Earth
・ Spherical function
・ Spherical geometry
・ Spherical Harmonic
・ Spherical harmonic lighting
・ Spherical harmonics
・ Spherical image
・ Spherical law of cosines


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Spherical cap : ウィキペディア英語版
Spherical cap

In geometry, a spherical cap or spherical dome is a portion of a sphere cut off by a plane. If the plane passes through the center of the sphere, so that the height of the cap is equal to the radius of the sphere, the spherical cap is called a ''hemisphere''.
== Volume and surface area ==

If the radius of the base of the cap is a, and the height of the cap is h, then the volume of the spherical cap is〔.〕
:V = \frac (3a^2 + h^2)
and the curved surface area of the spherical cap is〔
:A = 2 \pi r h
or
:A=2 \pi r^2 (1-\cos \theta)
The relationship between h and r is irrelevant as long as 0 ≤ h2r. The red section of the illustration is also a spherical cap.
The parameters a, h and r are not independent:
:r^2 = (r-h)^2 + a^2 = r^2 +h^2 -2rh +a^2,
:r = \frac .
Substituting this into the area formula gives:
:A = 2 \pi \frac h = \pi (a^2 + h^2).
Note also that in the upper hemisphere of the diagram, \scriptstyle h = r - \sqrt, and in the lower hemisphere \scriptstyle h = r + \sqrt; hence in either hemisphere \scriptstyle a = \sqrt and so an alternative expression for the volume is
:V = \frac (3r-h).

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Spherical cap」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.